(x^2-180,000)/(x^2)=0

Simple and best practice solution for (x^2-180,000)/(x^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-180,000)/(x^2)=0 equation:



(x^2-180.000)/(x^2)=0
Domain of the equation: x^2!=0
x^2!=0/
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
(x^2-180.000)=0
We get rid of parentheses
x^2-180.000=0
We add all the numbers together, and all the variables
x^2-180=0
a = 1; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·1·(-180)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*1}=\frac{0-12\sqrt{5}}{2} =-\frac{12\sqrt{5}}{2} =-6\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*1}=\frac{0+12\sqrt{5}}{2} =\frac{12\sqrt{5}}{2} =6\sqrt{5} $

See similar equations:

| 59x−1−13x=3 | | 6x*12=36 | | 6xx12=36 | | 3x-12=2x-4= | | 6-2x=4x+30 | | 1x+2x+5x−20=180 | | x+2x+5x−20=180 | | x+2x+5x−20=180. | | z/13=17 | | 7-(5x-1)=10 | | 411+11x+2x^2=0 | | 15x^2+17x+26=0 | | 92=(3*5*n*3)/3450 | | 24x+6=32 | | 112=(24*42)/n2 | | 2(x+3)/5=4 | | x/5+7=9.4 | | 36x+24=72 | | 2s-18=12 | | 3x+9=12x-6 | | 9x+53-20=180 | | 6(6+x)=5(4+x) | | 4x-2x=95 | | 1/3+p=25 | | 12y+5y=49 | | x-x/2.5=600 | | 4U^2−17u−15=0 | | 4u^2−17I−15=0 | | 37n^2+16n=0 | | (x^2-180,000)/x^2=0 | | H^2-6h+5=0 | | -2x=-2/5 |

Equations solver categories